addition to its short biological cycle, high reproductive potential, and high resistance to climatic factors, makes wild cochineal very useful in the control of weedy nopal (Zimmermann and Moran 1991; Chapter 14). However, it is also a dangerous competitor of D. coccus. Dactylopius coccus, on the other hand, is distinguished by its fine, waxy coating, which takes the form of a powder. Apart from its buccal apparatus, D. coccus has no other structure that aids its adherence to the surface of a cladode, making it more susceptible to environmental hazards.

Cytogenetically, all analyzed wild cochineal species have a chromosome number of n = 5 and similar chromosomal karyotypes: a long chromosome three times the average length and four short chromosomes (Aquino P. et al. 1994). Dactylopius coccus has a chromosome number of n = 8 and a different karyotype—all the chromosomes are short. The four longest chromosomes of D. coccus do not differ from those of their possible homologue in wild cochineal, and the length of the long wild cochineal chromosome equals the length of the sum of the four shortest chromosomes of D. coccus (Aquino P. et al. 1994). Thus, cochineal insects apparently eliminate meiosis II by a simple chromosomal segregation. Dactylopius coccus has a very low frequency of "normal" meiosis II, whereas wild species, such as D. confusus, have a high frequency of "normal" meiosis II (Aquino P. et al. 1994).

Coccidae generally have evolved toward an increase in chromosome number by means of chromosome fragmentation (Nur et al. 1987; Nur 1989). This has apparently occurred for both D. coccus and wild cottony cochineal. Nevertheless, a chromosome breakup usually produces more disadvantages than advantages, and three fragmen tations (which is what presumably occurred for D. coccus) could make the survival of the progeny more difficult. However, two additional modifications in the chromosomes of this insect group would increase the possibilities of survival of mutant individuals: (1) the presence of a diffuse centromere and (2) the inversion of the meiotic sequence (Chandra 1962). This permits balanced meiosis and equal separation of the chromosome groups, thereby reducing the loss of chromosome fragments—an irreconcilable loss in species with a defined centromere.

Marketing of Cochineal

Production and Prices

Since pre-Hispanic times in America, the cochineal market has been heavily affected by political and natural events, which have had much influence on production and prices. The highest prices for cochineal have always coincided with periods of prosperity in the principal consumer countries—historically England, France, Germany, and Holland, and at present, Italy, Japan, and the United States (Alzate 1831; Houghton 1877; Dahlgren 1963; Brana 1964; Donkin 1977; EPTASA 1983; Avila and Remond 1986; Contreras S. 1996; P. Quintanilla, personal communication; J. A. Bustamante, personal communication). The most favorable prices for cochineal possibly occurred from 1765 to 1775, when 520 metric tons (1 ton = 1,000 kg) were produced annually; the period from 1799 to 1833 was also a time of bonanza, although annual worldwide production had dropped to 190 tons, again almost all from Mexico. After this period, production and prices began to drop in Mexico in response to fierce competition from 1825 to 1880

from Guatemala and the Canary Islands. The Guatemalan market flourished from 1830 to 1865, but was overtaken by the booming Canary Islands' production from 1849 to 1882, despite the fact that world prices for cochineal had been in gradual decline since 1831. The main advantage for the Canary Islands was probably geographic—proximity to the main European consumer countries. Soaring production and lower shipping prices of Canary Islands' cochineal were probably the reasons for the drop in demand for the Guatemalan and Mexican dye; South American cochineal, meanwhile, had been in a slump since the turn of the 17th century. The Canary Islands' production continued from 1880 to 1927, albeit at lower levels and lower prices, due to the introduction of synthetic dyes; annual production averaged approximately 80 tons for 1927 to 1929 and currently is 40 tons year-1.

Although little information is available for South American cochineal production for 1750 to 1935, production was apparently over 1,000 tons for 1829 to 1859 (Brana 1964; Donkin 1977). Records of the Peruvian market appear in 1937 and show a linear increase since that date, becoming 100 tons by 1975 (Fig. 13.8A). From 1975 to 1990, Peru cornered the world market, with a share of up to 95%. Since 1990, Argentina, Bolivia, and Chile have entered the world market, causing a reduction in Peru's domination. Indeed, Peru's bulk exportation of the raw material since 1997 has diminished, and a greater volume is being consigned to processed dye (Fig. 13.8).

Supply and Demand

Presently Peru is the world's most important producer of cochineal. In response to increasing demand, Peru's production increased sixfold from 1975 to 1998, reaching 650 tons (Fig. 13.8A). Since 1983, Peru has steadily increased its industrial processing capacity for cochineal; since 1986 most of the exported cochineal has been processed (Fig. 13.8A). The price of cochineal has fluctuated widely, generally being below U.S. $20 per kilogram but reaching $40 in 1985 and $75 in 1996 (Fig. 13.8B). Prices of refined carminic acid, which accounts for about 10% of the dye export, tripled from 1994 to 1996, when it reached $400 per kg then decreased twofold by 1998, indicating the volatility of the market. If competition from synthetic dye manufacturers can be surmounted and if cochineal dye is internationally certified, the demand should increase.

Chile entered the world market in 1997 with a production of approximately 150 tons. Traditionally, Spain had 5 to 10% of world production, or approximately 65 tons. Peru, Chile, and Spain recently have annually supplied the world marketplace with 755 tons of cochineal. Moreover,

Figure 13.8. Peruvian cochineal production and prices for 1975 to 1998: (A) total production (0) and exportation of processed cochineal (A), and (B) prices for processed cochineal. References: Avial and Redmond (1986); EPTASA (1983); Contreras S. (1996); F! Quintanilla (personal communication); J. A. Bustamante (personal communication).

Figure 13.8. Peruvian cochineal production and prices for 1975 to 1998: (A) total production (0) and exportation of processed cochineal (A), and (B) prices for processed cochineal. References: Avial and Redmond (1986); EPTASA (1983); Contreras S. (1996); F! Quintanilla (personal communication); J. A. Bustamante (personal communication).

Chile and Peru have predicted increases in production, meaning that the annual supply of the dye from these three countries should approach 1,000 tons.

Conclusions and Future Prospects

A common way to consume cladodes in Mexico is as nopalitos. After despining, minimal processing facilitates consumption of the tender young pads. Nopalitos can be further processed in brine or pickled. The consumption of the young pads not only should increase the cultivation of Opuntia ficus-indica and consequently the use of arid lands in many regions of the world, but also should serve as a healthful food due mainly to the dietary fiber content. Dietary fiber increases with stem age, opening up other ways to process and use this part of platyopuntias in addition to the currently more popular use of young pads. Such use could be introduced into those countries where O. ficus-indica is presently only a fruit crop. The different alternatives for processing and consuming nopal and nopalitos require educating the consumers, including full information on the nutritional value of the cladodes and technology transfer. The processes used today are quite simple and do not require expensive equipment. The food industry can utilize similar processes already installed for other raw vegetables. The properties of cladodes to alleviate illnesses, such as diabetes and obesity, should be studied more to confirm their effectiveness. Mucilage has great potential as a thickener in foods and an adhesive in paints, but again these properties must be studied in greater detail.

The dye insect Dactylopius coccus has enjoyed great importance worldwide since its discovery in Mexico in the 16th century. Cochineal is valued not only as the source of a red colorant, useful in a number of products for human consumption, but also as a biological control of weedy nopal infestations in some parts of the world. Its importance as a colorant has made it the subject of scientific, economic, and historical inquiry since the late 18th century The most advanced investigations undertaken so far have been historical, chemical, and toxicological, whereas the biology of the parasitic insect has been largely ignored until recently. Genetic and biosynthetic aspects, as well as the host (Opuntia spp.)-parasite (Dactylopius spp.) interaction, have not received enough attention (Joshi and Lambdin 1996). For these reasons, it is presently difficult to determine the phylogenetic and evolutionary relationships, as well as the agronomic techniques, that would maximize the potential of both susceptible host cacti and D. coccus.


The authors thank anthropologist Jodie Randall for her comments regarding cochineal history and Mayra Perez Sandi y Cuen (Mac Arthur Foundation) for providing information on the cochineal trade.

Literature Cited

Albornoz, N. 1998. Elaboración y Evaluación de una Crema de Verduras con Adición de Fibra Dietética de Nopal. Facultad de Ciencias Agrarias y Forestales. Universidad de Chile, Santiago.

Ali, M. A., and L. J. Haynes. 1959. C-Glycosyl compounds. Part III. Carminic acid. Journal of the Chemical Society: 1033-1035.

Alzate, J. A. 1831. Memoria acerca del insecto grana o cochinilla, su naturaleza y serie de su vida, método de propagarlo y reducirlo al estado en que forma uno de los ramos más útiles del comercio (Written in 1777). Imprenta del Aguila, Mexico City.

Amin, El-S., O. M. Awad, and M. M. El-Sayed. 1970. The mucilage of Opuntia ficus-indica. Carbohydrate Research 15: 159-161.

Aquino, P., G., A. García V., T. Corona T., and N. M.

Barcenas O. 1994. Estudio cromosómico de cuatro especies de cochinilla del nopal (Dactylopius spp.) (Ho-moptera: Dactylopiidae). Agrociencia, serie Fitociencia 5: 7-23.

Arteaga, J. L. 1990. Influencia de la fertilización N-P-K en la producción de cochinilla (Dactylopius coccus Costa). Bachelor's Thesis, Universidad Nacional de San Cristóbal de Huamanga, Ayacucho, Peru.

Avena, B. R. S. 1996. Proceso de hortalizas pre-cortadas. Boletín del Centro de Investigación en Alimentos y Desarrollo, A.C. 5: 7-8.

Avila, R., and Z. Remond. 1986. Estudio Técnico de la Cochinilla. Dirección de Servicios Técnicos, División de Extracción Industrial (ITINTEC), Lima, Peru.

Badillo, J. R. 1987. Elaboración de una jalea de nopal. Bachelor's Thesis, Escuela de Ciencias Químicas, Universidad Autónoma de Puebla, Puebla, Mexico.

Barbera, G. 1991. Utilizzazione economica delle Opunzie in Messico. Frutticoltura 2: 41-48.

Borrego, F., and N. Burgos. 1986. El Nopal.Universidad Autónoma Agraria Antonio Narro, Saltillo, Mexico.

Brana, D. D. 1964. Cochineal: Aboriginal dyestuff from Nueva España. In Actas y Memorias delXXXVI Congreso Internacional de Americanistas. University of Texas, Austin. Pp. 77-91.

Brecht, J. K. 1995. Physiology of lightly processed fruits and vegetables. HortScience 30: 18-24.

Bustamante, O. 1986. Estudio del ciclo biológico de la cochinilla (Dactylopius coccus Costa) en su ambiente natural en Ayacucho. In Resúmenes del 1er. Congreso Nacional de Tuna y Cochinilla. Ayacucho, Peru. Pp.

Was this article helpful?

0 0
Building Your Own Greenhouse

Building Your Own Greenhouse

You Might Just End Up Spending More Time In Planning Your Greenhouse Than Your Home Don’t Blame Us If Your Wife Gets Mad. Don't Be A Conventional Greenhouse Dreamer! Come Out Of The Mould, Build Your Own And Let Your Greenhouse Give A Better Yield Than Any Other In Town! Discover How You Can Start Your Own Greenhouse With Healthier Plants… Anytime Of The Year!

Get My Free Ebook

Post a comment